Generating Lyndon brackets.: An addendum to: Fast algorithms to generate necklaces, unlabeled necklaces and irreducible polynomials over GF(2)

نویسندگان

  • Joe Sawada
  • Frank Ruskey
چکیده

It is well known that the Lyndon words of length n can be used to construct a basis for the n-th homogeneous component of the free Lie algebra. We develop an algorithm that uses a dynamic programming table to efficiently generate the standard bracketing for all Lyndon words of length n, thus constructing a basis for the n-th homogeneous component of the free Lie algebra. The algorithm runs in linear amortized time; i.e., O(n) time per basis element. For a single Lyndon word, the table (and thus the standard bracketing) can be computed in time O(n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Algorithms to Generate Necklaces, Unlabeled Necklaces, and Irreducible Polynomials over GF(2)

Many applications call for exhaustive lists of strings subject to various constraints, such as inequivalence under group actions. A k-ary necklace is an Ž . equivalence class of k-ary strings under rotation the cyclic group . A k-ary unlabeled necklace is an equivalence class of k-ary strings under rotation and permutation of alphabet symbols. We present new, fast, simple, recursive algoŽ . rit...

متن کامل

Practical algorithms to rank necklaces, Lyndon words, and de Bruijn sequences

We present practical algorithms for ranking k-ary necklaces and Lyndon words of length n. The algorithms are based on simple counting techniques. By repeatedly applying the ranking algorithms, both necklaces and Lyndon words can be efficiently unranked. Then, explicit details are given to rank and unrank the length n substrings of the lexicographically smallest de Bruijn sequence of order n.

متن کامل

Efficient Indexing of Necklaces and Irreducible Polynomials over Finite Fields

We study the problem of indexing irreducible polynomials over finite fields, and give the first efficient algorithm for this problem. Specifically, we show the existence of poly(n, log q)-size circuits that compute a bijection between {1, . . . , |S|} and the set S of all irreducible, monic, univariate polynomials of degree n over a finite field Fq. This has applications in pseudorandomness, an...

متن کامل

A Gray code for fixed-density necklaces and Lyndon words in constant amortized time

This paper develops a constant amortized time algorithm to produce a cyclic cool-lex Gray code for fixed-density binary necklaces, Lyndon words, and pseudo-necklaces. It is the first Gray code for these objects that achieves this time bound. The algorithm is applied: (i) to develop a constant amortized time cyclic Gray code for necklaces, Lyndon words, and pseudo-necklaces ordered by density an...

متن کامل

Gray codes for necklaces and Lyndon words of arbitrary base

Recently, a Gray code for unrestricted binary necklaces and their relatives was discovered by Vajnovszki [Discrete Mathematics & Theoretical Computer Science, to appear]. The Gray code is constructed by modifying the classical FKM algorithm for generating necklaces in lexicographic order. We present a generalisation of Vajnovszki’s algorithm, giving a Gray code for necklaces and their relatives...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Algorithms

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2003